CutLang: a text-based particle physics analysis description
language and run time interpreter

S. Sekmen' and G. Unel? —December 7, 2017

'Kyungpook National University, Physics Dept., Daegu, South Korea
2University of California at Irvine, Department of Physics and Astronomy, Irvine, USA

The CutLang User Manual

(V2 / November 2017 - For users with some experience in ROOT)

e Pre-requisites to run CutLang:

Any Unix, Linux or OSX machine is fit to run CutLang. Basic knowledge of terminal operations such as editing
a text file and moving files around is also needed in addition to running the analysis executable. Basic knowledge
on ROOT macros would be good for manipulating histograms if preferred, but is not essential. Typically a user
will have to find and work with at least these files:

e The text file CLA.ini (this is the example analysis configuration file, although it can also be specified at
the command line)

e The shell script file CLA.sh (this is the main executable)

e The ROOT file to be analyzed (this is the “events” file) (A ttbar example can be downloaded from
http://cutlang.hepforge.org for a quick start). Multiple comma separated input files and their paths can be
specified at the command line; e.g. ./CLA.sh ../roots/atlaslttbar.root,../roots/atlas2ttbar.root
ATLASOD

e Analysis scope in CutLang:

Only electron and muon triggers are implemented in this version. Wherever the term ’lepton’ or the abbreviation
“LEP” is used, they refer to either electron or muon depending on the selected trigger. Tau channel is not
available in this version.

e Obtaining and compiling CutLang analysis binary:

The latest version of the CutLang Analysis package can be downloaded from HepForge at
http://cutlang.hepforge.org

The downloaded file should be opened with

tar -xzf CLA_V200.tgz}

This will automatically create the CutLang directory. To compile,

cd CutLang/CLA
make

The runs should be executed from the CutLang/runs subdirectory.

e How to run an example CutLang analysis:

This section provides the 8 steps to follow for running an analysis in CutLang.

e Step0- Open a Terminal

e Stepl- Go to Directory ‘CutLang/runs’

e Step2- Edit the analysis description file, e.g. CLA.ini

e Step3- Go back to the same Terminal

e Stepd- Execute the analysis description edited in Step2 using the following command:

./CLA.sh cms-opendata-ttbar.root CMSOD [-i youranalysis.ini]

[-e number_of_events_to_process] [-v verbosity]

Stepb- CutLang lists the analysis evaluation results on screen.
— If everything is correctly entered in the analysis description file in Step2, the user will see the following
message on the screen: “End of analysis initialization”. All is well, proceed to Step6.

— If there are any errors in the analysis description, CutLang notifies the user about the unknown
parameter(s) as “UF0”(s). Go back to Step2, verify and correct the ‘ini’ file.

e Step6- CLA lists every 1000 processed event messages until it reaches the end of the ROOT file.

e Step7- Efficiency table for the analysis is displayed on the screen.

e Step8- CLA displays the message: “saving...finished” at the end of the analysis. Output file is saved
under the same directory. Its name is given by the system as histoOut-NAME.root ; where NAME is the
name of the analysis description ini file. If no name is specified, the default value of histoOut-CLA.root
is used. If users wish to keep output from previous analysis, the output file is to be renamed. Otherwise,
the CLA.sh will overwrite the output file.

e How to see the CutLang output files:

There are two ways to see the contents of the CutLang output file:

1. Open it using ROOT : root.exe histoOut-CLA.root; launch a TBrowser

2. Run the default macro: ./showall.sh

e File and command details:

CLA.ini

CLA.sh

default input file used in Step2 is the analysis description file that provides the analysis algorithm.
It is available by default for all CutLang users and it is editable. Based on this one, similar input
files can be prepared and used.

The script that executes CutLang analysis as shown in Step4. The first two arguments are manda-
tory: the first is the name of the ROOT data file to be analyzed, e.g. cms-opendata-ttbar.root.
The analyst has to get it correctly from the relevant source. The second argument is the input data
format. There are several readable ROOT file formats. The user needs to specify one among the
following: ATLASOD (ATLAS open data), LVL0, FCC, LHCO, Delphes or CMSOD (CMS open
data), or add a new format as described in the last section of this document. The other arguments
are optional and can be listed as:

-e|--events the number of events to be processed. By default all events (represented by 0) are
processed.
-il--inifile the initialization file to be processed. By default CLA.ini is processed.

-v|--verbose the verbosity frequency. By default after each 1000 events the current event number
is written on screen.

-h|--help displays these explanations as reminders.

histoOut-NAME.root output file produced in Step8 where NAME is the name of the analysis de-
scription ini file. If no name is specified, the default value of histoOut-CLA.root is used. In case
of multiple signal regions, each region will have its own directory inside the output file marked with
BP_i where i is index number.

e How to display/edit the analysis description file ‘CLA.ini’ (Step2):

The initialization file is made of three sections:

R1 :

R2:

R3:

R4:

R5:

Objets thresholds: This section is mandatory. It contains the n and py threshold values for a particle
to be accepted.

User definitions: This is a non-mandatory section containing user definitions starting with keyword
‘def’ for new composite particles and variables. These definitions are practical as they create shorthand
names for otherwise long expressions for later use.

Event selection algorithm: This section is mandatory. It consists of lines starting with keyword ‘cmd’
which define event operation or selection criteria. It also consists of lines starting with ‘histo’ which
signify the histogram definitions.

Common rules for all sections

All lines start with one of the def, cmd, or histo keywords. No space should exist before the keywords.
Note that there are no keywords for the object thresholds section.

Indefinite amount of space is allowed between the keyword and the command/description.

Every command/description must be enclosed within double quotation marks, and there should be a space
before the ending quotation mark, e.g. “mLL : { LEP_1 LEP_0 }m", or "mLL [] 70 120 ".

There is no upper limit for the number of lines.

At least one space must be left before and after each term; including operands, numbers.

All units in CutLang are either GeV or radians (c=1, therefore mass, momentum, energy are all in GeV)
All variable, function and particle names are case sensitive.

Additional rules in editing the ini file

"7 ="and"! =" cannot be combined with any other operator or function. For example:

"nJET >= 6 AND nBJET >= 2" OK

"mTopb "= 175" OK

" mTopb "= 175 AND nBJET >= 2 " not OK

" mTopb "= 175 AND mTopb2 "= 175 " not OK

Any expression after a “#” is considered as a comment. If the user likes to temporarily skip a line in the
program, it is sufficient to add a “#” in the beginning of the line.

Names of the user defined composite particles and variables are unique. They cannot be redefined within
the same analysis.

“{ }” are used to mention the properties of particles, e.g. mass, charges etc. One can add as many particles
as required in the term within the curly braces.

The order of particles in a particle combination does not have an impact on the outcome; i.e. : LEP_O
LEP_1 is not different than LEP_1 LEP_0

An example ini file with multiple regions

OBJECT THRESHOLDS

minpte = 15.0 # min pt of electroms
minptm = 15.0 # min pt of muons
minptj = 15.0 # min pt of jets

maxetae = 2.47 # max pseudorapidity of electrons
maxetam = 2.5 # max pseudorapidity of muons
maxetaj = 5.5 # max pseudorapidity of jets

TRGm = 0 # muon Trigger Type: O=dont trigger, 1=1st trigger (data) 2=2nd trigger (MC)
TRGe = 2 # electron Trigger Type: O=dont trigger, 1=1st trigger (data) 2=2nd trigger (MC)

USER DEFINITIONS

def "WH1 : JET_-1 JET_-1 " # W boson of the first top

def "WH2 : JET_-11 JET_-11 " # W boson of the second top
def "mWH1 : { WH1 Jm " # mass of W boson of the first top
def "mWH2 : { WH2 }m " # mass of @ boson of the second top
def "mTopH1 : { WH1 JET_-2 }m " # first top quark’s mass
def "mTopH2 : { WH2 JET_-4 }m " # second top quark’s mass

EVENT SELECTION

algo __preselection__

cmd "ALL " # to count all events

cmd "nJET >= 6 " # events with 6 or more jets

cmd "MET < 100 " # fully hadronic events should have small MET
#cmd "FillHistos "

#histo "Basics "

algo __teknikl_ _

__preselection__

cmd "mTopHl1 - mTopH2 / 4.2 ~ 2 + mWH1 - 80.4 / 2.1 ~ 2 + mWH2 - 80.4 / 2.1 =~ 2 "= 0 " # 2 topHads
cmd "FillHistos "

histo "mWHh1 , Hadronic W reco (GeV), 50, 50, 150, mWH1 "
histo "mWHh2 , Hadronic W reco (GeV), 50, 50, 150, mWH2 "
histo "mTopHhal , Hadronic top reco (GeV), 70, O, 700, mTopH1
histo "mTopHhbl , Hadronic top reco (GeV), 70, O, 700, mTopH2 "

algo __teknik2__

__preselection__

cmd "mWH1 - 80.4 / 2.1 - 2 + mWH2 - 80.4 / 2.1 -~ 2 =0 " # 2 WHads
cmd "mTopH1 - mTopH2 / 4.2 ~ 2 "=0 "

cmd "FillHistos "

histo "mWHh1 , Hadronic W reco (GeV), 50, 50, 150, mWH1 "

histo "mWHh2 , Hadronic W reco (GeV), 50, 50, 150, mWH2 "

histo "mTopHhal , Hadronic top reco (GeV), 70, O, 700, mTopH1 "
histo "mTopHhbl , Hadronic top reco (GeV), 70, O, 700, mTopH2 "

e How to add a new file format to CutLang Analysis:

e An example root ntuple file for the new file format has to be acquired and loaded into ROOT.

e The MakeClass command from ROOT should be called on the new ntuple with a new class name, e.g.
newNT->MakeClass ("XFormat") ;

e The resulting header file (XFormat.h)has to reside in the analysis_core subdirectory, and it has to be
included by the main code CLA.C

e The implementation macro (XFormat.C file) has to be in the CutLang/CLA directory, and has to include
these needed headers:

#include "lhco.h"

#include <TH2.h>}
#include <TStyle.h>}
#include <TCanvas.h>}
#include <signal.h>}
#include "dbx_electron.h"
#include "dbx_muon.h"
#include "dbx_jet.h"
#include "dbx_a.h"
#include "DBXNtuple.h"
#include "analysis_core.h"
#include "AnalysisController.h"

In the event loop, it has to fill the predefined electron, muon, photon and jet particles vectors, without
forgetting any available event-wide information like RunNumber, EventNumber etc... An example for the
LHCO format is:

TLorentzVector alv; dbxMuon *adbxm; vector<dbxMuon> muons;
for (unsigned int i=0; i<Muon_; i++) {
alv.SetPtEtaPhiM(Muon_PT[i], Muon_Etal[i], Muon_Phil[i], (105.658/1E3)); // all in GeV
adbxm= new dbxMuon(alv);
adbxm->setCharge (Muon_Charge[i]);
adbxm->setEtCone (Muon_ETiso[i]);
adbxm->setPtCone (Muon_PTiso[i]);
adbxm->setParticleIndx(i);
muons . push_back (*adbxm) ;
delete adbxm;
}

The last steps in this file should be as follows:

AnalysisObjects aO={muons, electrons, photons, jets, met, anevt};
aCtrl.RunTasks (a0);

} // end of event loop

aCtrl.Finalize();

} // end of Loop function

